Antiarrhythmic Drugs

Division of Cardiovascular Medicine Taipei Medical University-Wan-Fang Hospital

Hsieh Ming-Hsiung M.D.

Vaughan Williams (1970) Classification of AAD

Class I: Sodium channel blockers
Class II: Beta-blockers
Class III: Potassium channel blockers
Class IV: Calcium channel blockers
Sicilian Gambit Classification (1991)

Class | Antiarrhythmic Drugs

Class I: block fast sodium channel **Class IA: reduce V_{max} and prolong APD** quinidine, procainamide, disopyramide **Class IB:** shorten APD lidocaine, mexiletine, phenytoin **Class IC:** reduce V_{max} and \downarrow conduction propafenone, flecainide, moricizine

Quinidine (Class IA)

History:

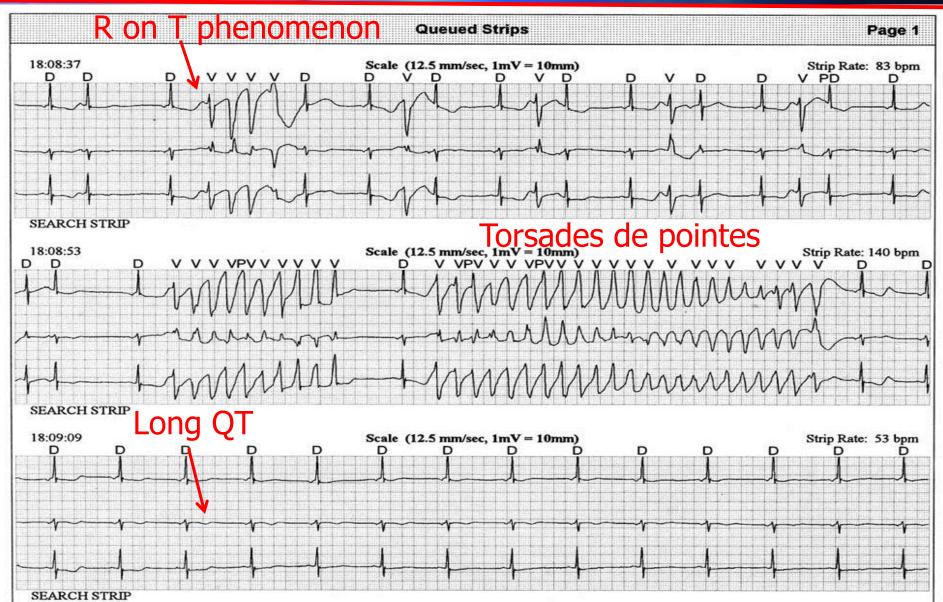
- * the oldest antiarrhythmic drugs
- * (1749) cinchona alkaloids
- * (1848) antimalarial agent, had antiarrhythmic action
- * (1918) routine use for atrial fibrillation

Mechanisms:

- * blocks sodium and potassium channels affects depolarization and repolarization
- * blocks a1-& a2-adrenergic receptors, and muscarinic receptor

Quinidine (Class IA)

Hemodynamics:


- * orthostatic hypotension & reflex tachycardia
- * enhance AV node conduction Effects:
- * suppressed automaticity and DADs, created EADs, prolonged QTc Side effects:
- * GI side effects : abdominal pain & diarrhea
- * Cinchonism : decreased hearing, tinnitus, and blurred vision
- * Thrombocytopenia, lupus syndrome

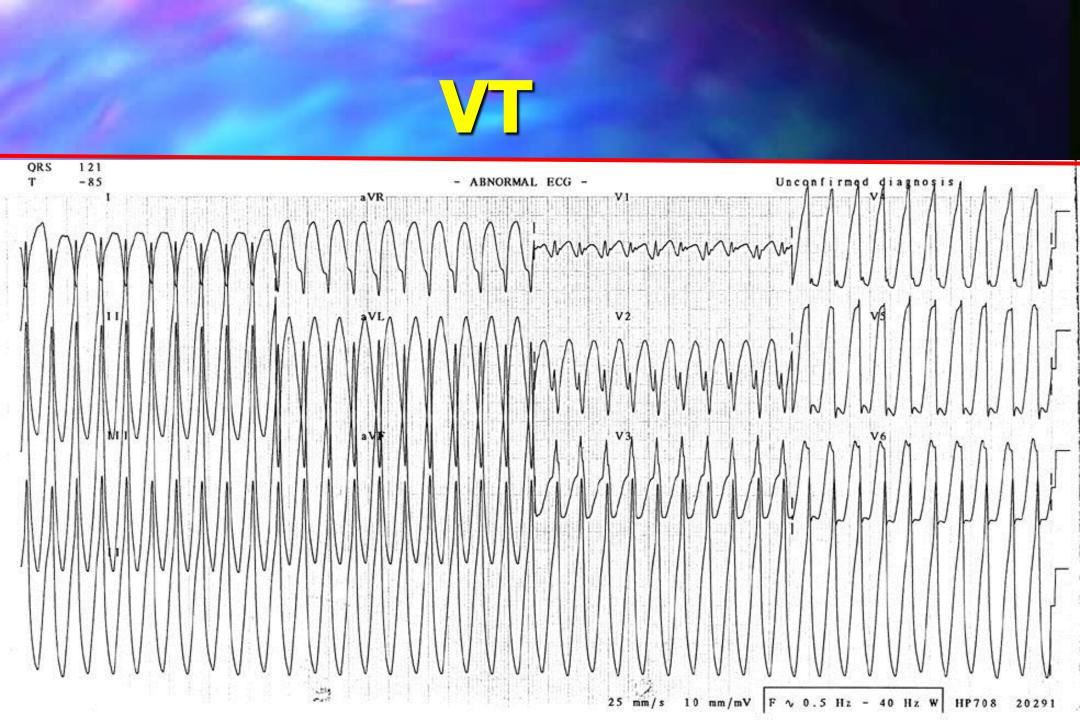
Quinidine (Class IA)

Proarrhythmia:

- * Quinidine syncope: VT, VF or TdP (torsades de pointes), 0.5% to 4.4%, not dose-related
 * Discontinued drug when QTc > 500 ms
- * Avoid hypo K+, Ca++, Mg++
- **Efficacy:**
- * Effective against supraventricular or ventricular arrhythmias, especially in conversion of AF to NSR.
- Dosing:
 - * oral 300 to 600 mg q6h
 - * IV 10 mg/Kg for > 20 mins

LQTS with TdP

Lidocaine (Class IB)


- * Local anesthetic in 1946 Antiarrhythmic drug in 1950
- * IV form T1/2 = 8~10 minutes

Mechanisms:

- Blocks I_{Na} current, predominant the inactivated state
- Suppresses normal or abnormal automaticity
- Suppresses the EADs and DADs
- Depresses excitability and conduction

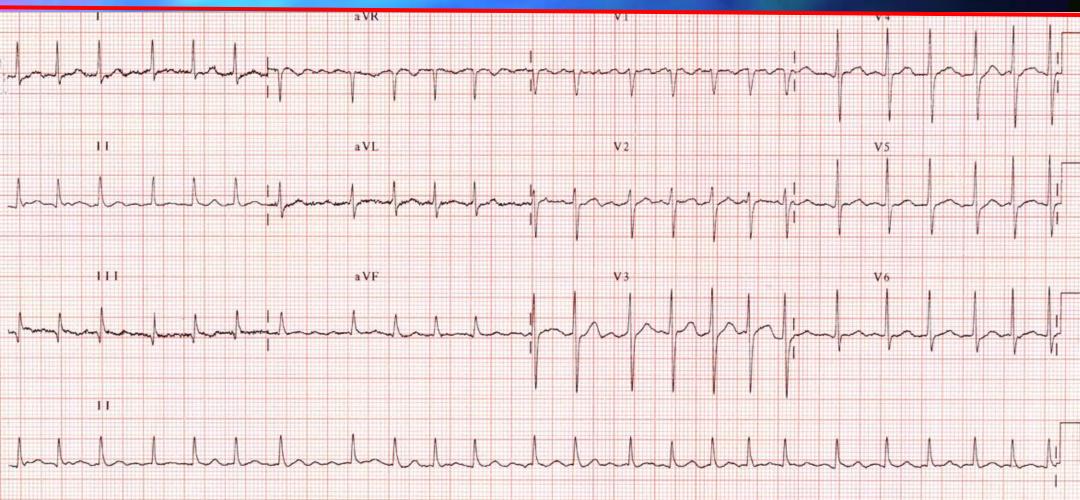
Lidocaine (Class IB)

- * CNS side effects: paresthesia, diplopia, slurred speech, altered consciousness, seizure, respiratory arrest, and coma.
- * Proarrhythmia: rare
- * Drug of first choice: acute treatment of hemodynamic stable monomorphic VT
- * Loading dose: bolus of 1.5 mg/kg, three additional bolus (half of the initial dose), every 9 minutes

Propatenone (Class IC)

- * FDA approval in 1989.
- * Not recommended use during pregnancy. Mechanisms:
- * Blocks I_{Na} current, use-dependent manner, both the activated and inactivated state
- * Blocks I_K, L-type calcium channels (1/75 of verapamil)
- *** Nonselective β-adrenergic block**
- * Negative inotropic effects

Propatenone (Class IC)


Side effects:

- * Nausea, dizziness-most common side effects
- Blurred vision, paresthesias, increased liver function, exacerbation of asthma.
- Proarrhythmia: 5% (ventricular arrhythmia: polymorphic VT/VF; Inccessant VT, atrial flutter with 1:1 conduction)

Clinical use:

- Effective against a wide range of supraventricular and ventricular arrhythmias, especially in paroxysml AF
- * Single PO loading dose (600 or 900 mg) : in converting recent-onset AF

Atrial Fibrillation

<u> Beta-blockers (Class II)</u>

Mechamismes: βeta-adrenergic receptors block

- * Depresses the slope of phase 4 and suppress automaticity
- * Prolongation of conduction in the atria and AV node
- * Action potential duration & QT internal : controversial

Clinical effects:

- * Modest effect in suppressing ventricular and supraventricular arrhythmias
- * Elevation of ventricular fibrillation threshold

βeta-blockers on <u>Ventricular arrhythmias</u>

Non-sustained ventricular arrhythmias

- * Produces a variable degree of premature ventricular contractions (PVCs) suppression
- * First-line drug therapy for symptomatic ventricular arrhythmias

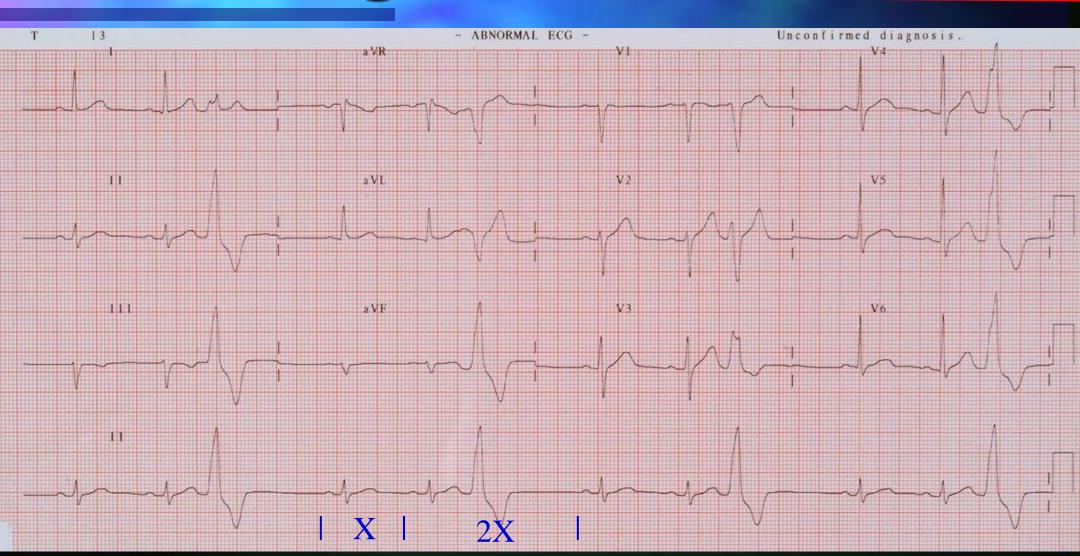
Sustained Monomorplic VT

* No direct effects on ischemic VT

Effective in control of catecholamine-sensitive VT
 Polymorphic VT/VF

- * Adjuvant therapy for implantable cardioverter defibrillators (ICDs) to control VT/VF
- * The cornerstone of therapy for congenital long QT syndrome : ↓ sympathetic activation

βeta-blockers on Supraventricular Tachyarrhythmias

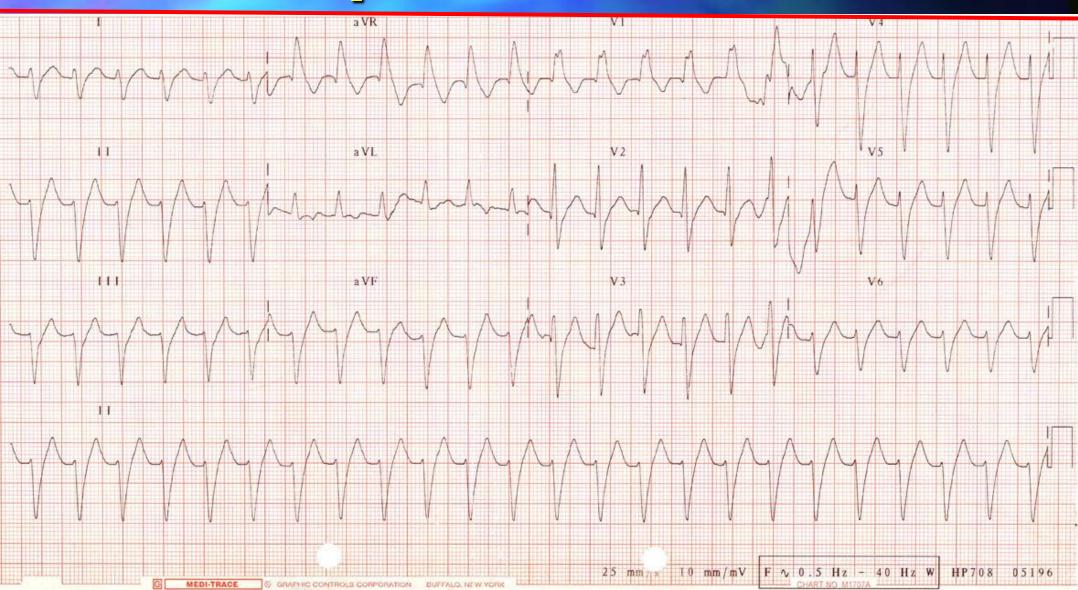

Paroxysmal Supraventricular Tachycardia (PSVT)

- * Acute termination of PSVT: 50%.
- * Prevent recurrence of PSVT: efficacy unknown. Ectopic atrial tachycardia (AT)
- Not uniformly effective in termination or suppression of AT.

Atrial flutter (AFL) and Atrial fibrillation (AF)

- * No specific antifibrillatory properties for AF
- * Slowing of AV conduction, reduce ventricular rate of AFL/AF.
- * No significant effects on conversion of AFL and AF to SR.
- * Reduction in the incidence of AF following cardiac surgery.

Trigeminal VPCs

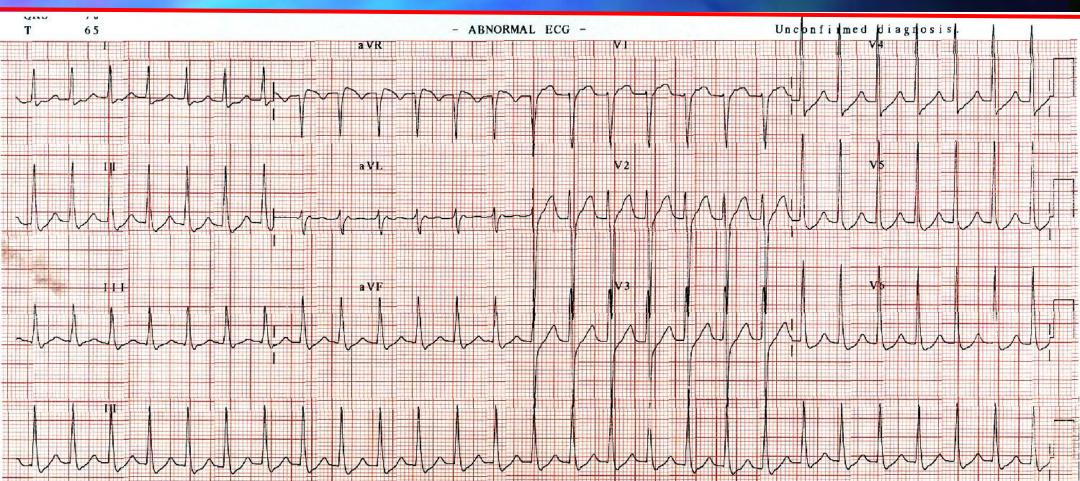

Calcium Channel Blockers (Class IV)

- More than six classes of calcium channels, only two in the cardiovascular system: L-type and T-type calcium channels.
- L-type calcium channels are found in skeletal, cardiac and smooth muscle cells.
- T-type calcium channels: in the pacemaker cells and in Punkinje fibers, not in the ventricular myocytes.
- L-type CCBs: Verapamil, Diltiaiem and Nifedipine (No effects on cardiac arrhythmias).
 T-type CCBs: Miberfradil.
- * Normal AV node: slow (calcium) channel dependent.
- * Major effects of CCBs : in the AV node, no significant effects on atrial, ventricular or His-Purkinje fibers.

CCBs on Ventricalar Arrhythmias

- * No effect in suppression of PVCs
- * Ischemic VT/VF: No clinical effects
- **VT in Patients with normal heart**
- * Exercise-triggered VT (EKG: LBBB, RVOT origin): Verapamil maybe effective
- * Idiopathic LV-VT (EKG: RBBB+LAD)
 -response to IV verapamil

Idiopathic LV-VT



CCBs on Supraventricular Tachycardias

Acute termination of PSVT:

- * Beta-blocker: 40 ~ 50%
- * Digoxin:45 ~ 55%
- * Class I agents: 50 ~ 75%
- * Class III agents: 65 ~ 85%
- * Verapamil: 80 ~ 90% (10 mg slow infusion)
- * Adenosie: around 90% (12 mg bolus) Drug of choice for PSVT: IV adenosine or verapamil
- * Prevent recurrence of PSVT: Limited

KENDALL MEDITRACE

25 mm/s 10 mm/mV F 2 0 5 Hz - 40 Hz W 11P703 \$8490

CCBs on <mark>Supraventricular Tachycardias</mark>

Multifocal atrial tachycardia (MAT):

maybe effective in termination

Preexcitation syndrome: (WPW) syndrome

- * Oral prophylaxis of orthodromic AVRT : not defined
- * Contraindications in patients with AFL and AF complicating preexication: CCBs, B-blocker, digitalis, and adenosine

Atrial flutter and Atrial fibrillation:

 * slowing the ventricular response of AFL or AF--IV or oral verapamil or diltiazem

Adenosine (I)

- An endogenous nucleoside--an important biochemical intermediate.
- A number of receptors subtypes: A1, A_{2A}, A_{2B}, A3.

Direct action:

- * Activation of an outward potassium current (IK_{ADO}) in the atrium, sinoatrial (SA) and atrioventricular (AV) nodes.
- * Inhibition of the pacemaker current (If) in SAN and AVN.
- * Slight inhibition of a non-sustained basal inward calcium current (Ica) in atrial myocytes.

Indirect action:

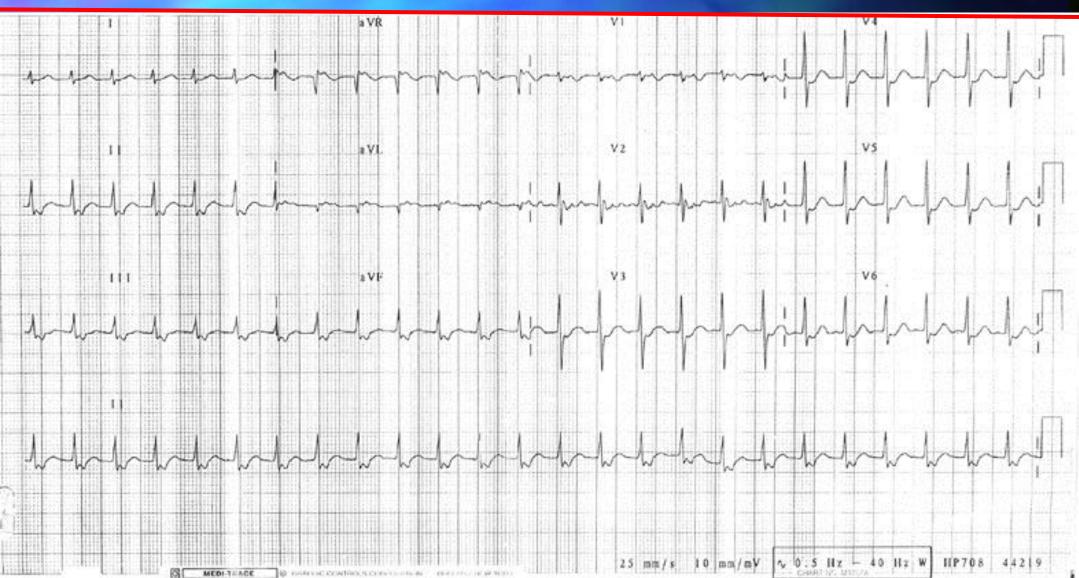
inhibition of intracellular cAMP generation.

Adenosine (II)

Clinical effects:

- * Half-life: 0.5 to 5 seconds
- * Rapid IV bolus of adenosine resulted in
- -- a transient (< 10 seconds) sinus slowing with or without AV block, followed by a short (15-45 seconds) period of sinus tachycardia
- * In the atria: shortens action potential duration and effective refractory period
- * Dipyridamole: blocks cellular uptake of adenosine
- * Methylxanthines: adenosine A1 & A2 antagonists

Adenosine (III)


Paroxysmal Supraventricular Tachycardia:

- * Two common forms :AV nodal reentry or AV reentry tachycardia require intact AV nodal conduction
- * First choice for terminating PSVT: IV adenosine or verapamil

Side effects:

- * facial flushing, chest pain, and dyspnea
- * Bronchospasm
- * Proarrhythmia: frequent PACs or PVCs, AF & VF

Orthodromic AVRT

Adenosine (IV)

Atrial tachyarrhythmias:

- * Atrial tachycardia : variable response, dependent on the mechanisms (reentry or triggered activity)
- * AFL or AF : transient AV block (for diagnosis) with secondary acceleration of ventricular rate

Ventricular tachycardia:

- * No direct effects on ventricular myocytes in human
- * Inhibits catecholamine-stimulated calcium currents Inhibits EADs and DADs
- * Effective in termination of RVOT-VT

Digitalis (I)

Mechanisms:

- * directly inhibits sodium-potassium adenosine triphosphatase (Na-K ATPas)--> increases intracellular calcium concentration
- * Major antiarrhythmic effects: mediated by central and peripheral actions to augment vagal tone
- * At high level : increases sympathetic tone and automaticity, and DADs

Digitalis (II)

Clinical effects:

- * In the AV node : slowing conduction and prolonged effective refractory period
- * In the sinus node : minimally slowed the automaticity except in patients with SAN dysfunction
- * In the atria : shortened refractory period and more rapid conduction
- * Toxic level : increased automaticity in both supraventricular and ventricular tissues.

Digitalis (III)

Antiarrhythmic use:

- * The major role : control of ventricular rate during atrial tachyarrhythmias
- * New-onset of AF : effective control is delayed for at least 4 to 12 hours
- * Chronic AF : the primary candidates for digoxin therapy, especially in patients with CHF
 Side effects:
- * anorexia, nausea & vomiting, headache, halo vision
- * AV block, junction rhythm or bidirectional VT

Amiodarone (Class III)

- An initial antianginal agent
- Could serve as a textbook of how not to design a drug (Stanley Nattel)
- The most effective and safetest agent available for a variety of cardiac arrhythmias.

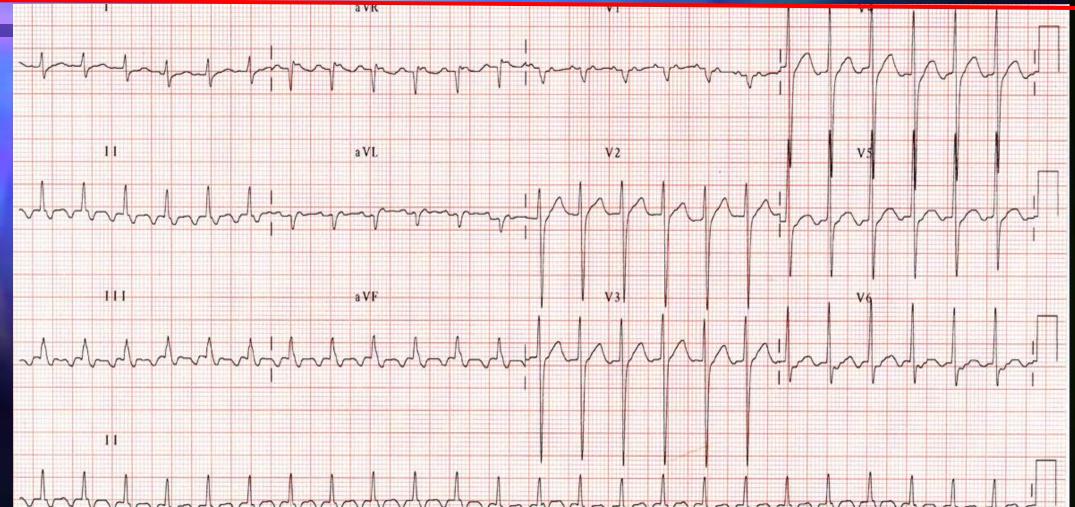
<u>Mechanism:</u>

- * Reduce V_{max} and I_{Na} (class IB)
- * Non-competitive adrenergic antagonism (class II)
- * Prolongation of action potential duration (class III)
- * Inhibiting I_{Kr} , I_{Ks} , and I_{K1} , and Blocks I_{Ca} (class IV)

Amiodarone (Class III)

Clinical use:

Reduce the rate of sudden cardiac death post MI
Increase the successful resuscitation rate of drug- resistant ventricular arrhythmias
Be safer and more effective than other drugs in the maintenance of sinus rhythm in patients with AF.


Reduce the incidence of postoperative AF

Amiodarone (Class III)

Side effects:

- * Sinus bradycardia or slow ventricular response to AF
- * Hypotension (IV form)
- * Proarrhythmias: TdP rare, except hypokalemia
- * Pulmonary fibrosis: maybe irreverible
- * CNS side effects: anxiety, tremor, headache etc.
- * Corneal microdepoit, photophobia, colored halo
- * GI side effects: poor appetite, nausea, vomiting
- * Cutaneous photosensitivity
- * Thyroid function abnormalities

Atrial Flutter

